Câu 59 Trang 90
SGK Toán tập 2
Câu 59 Trang 90

Cho hình bình hành ABCD. Đường tròn đi qua ba đỉnh A, B, C cắt đường thẳng CD tại P khác C. Chứng minh AP = AD.

Câu 58 Trang 89
SGK Toán tập 2
Câu 58 Trang 89

Cho tam giác đều ABC. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, lấy điểm D sao cho

DB = DC, $\widehat{DCB}=\frac{1}{2}.\widehat{ACB}$

a) Chứng minh ABCD là tứ giác nội tiếp.

 b) Xác định tâm của đường tròn đi qua bốn điểm A, B, C, D.

 

Câu 57 Trang 89
SGK Toán tập 2
Câu 57 Trang 89

Trong các hình sau, hình nào nội tiếp được trong một đường tròn:

Hình bình hành, hình chữ nhật, hình vuông, hình thang, hình thang vuông, hình thang cân? Vì sao?

Câu 55 Trang 89
SGK Toán tập 2
Câu 55 Trang 89

Cho ABCD là một tứ giác nội tiếp đường tròn tâm M, biết $\widehat{DAB}=80^{\circ}$, $\widehat{DAM}=30^{\circ}$, $\widehat{BMC}=70^{\circ}$. Hãy tính số đo các góc $\widehat{MAB}$, $\widehat{BCM}$, $\widehat{AMB}$, $\widehat{DMC}$, $\widehat{AMD}$, $\widehat{MCD}$ và $\widehat{BCD}$.

Câu 54 Trang 89
SGK Toán tập 2
Câu 54 Trang 89

 Tứ giác ABCD có $\widehat{ABC}+\widehat{ADC}=180^{\circ}$.

Chứng minh rằng các đường trung trực của AC, BD, AB cùng đi qua một điểm

Câu 51 Trang 87
SGK Toán tập 2
Câu 51 Trang 87

Cho I, O lần lượt là tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp tam giác ABC với A = $60^{\circ}$. Gọi H là giao điểm của các đường cao BB'và CC'.

Chứng minh các điểm B, C, O, H, I cùng thuộc một đường tròn.

Câu 50 Trang 87
SGK Toán tập 2
Câu 50 Trang 87

Cho đường tròn đường kính AB cố định, M là một điểm chạy trên đường tròn. Trên tia đối của tia MA lấy điểm I sao cho MI = 2MB.

a) Chứng minh $\widehat{AIB}$ không đổi.

b) Tìm tập hợp các điểm I nói trên

Câu 49 Trang 87
SGK Toán tập 2
Câu 49 Trang 87

Dựng tam giác $ABC$, biết $BC=6cm$, $\widehat{A}=40^{\circ}$ và đường cao $AH=4cm$.

Câu 48 Trang 87
SGK Toán tập 2
Câu 48 Trang 87

Cho hai điểm A, B cố định. Từ A vẽ các tiếp tuyến với các đường tròn tâm B có bán kính không lớn hơn AB. Tìm quỹ tích các tiếp điểm.

Câu 47 Trang 86
SGK Toán tập 2
Câu 47 Trang 86

Gọi cung chứa góc $55^{\circ}$ ở bài tập 46 là cung AmB. Lấy điểm $M_{1}$ nằm bên trong và điểm $M_{2}$ nằm bên ngoài đường tròn chứa cung này sao cho $M_{1}$, $M_{2}$ và cung AmB nằm cùng một phía đối với đường thẳng AB. Chứng minh rằng:

a) $\widehat{AM_{1}B}>55^{\circ}$

b) $\widehat{AM_{2}B}

Get The Best Blog Stories into Your inbox!

Sign up for free and be the first to get notified about new posts.